Difference between revisions of "CIS 3020 Part 7"
Jump to navigation
Jump to search
Line 122: | Line 122: | ||
** Assumptions: none | ** Assumptions: none | ||
** Relationships: none | ** Relationships: none | ||
+ | * For what group of strings do we immediately know a solution? | ||
+ | ** Strings consisting of a single character | ||
+ | ** Strings consisting of no characters | ||
+ | * These define our base cases | ||
+ | * How can we work towards these base cases? | ||
+ | # Remove first character | ||
+ | # Reverse the rest of the string | ||
+ | # Add the first character to the end | ||
+ | ** This defines our recursive case |
Revision as of 11:33, 26 April 2007
Contents
Complexity
- When computing O(), we are concerned with big values of n
- With big values, constants become ignorable
- Consider the two exponential functions we developed
- Let's count all operations (arithmetic, assignment, references, comparisons, etc.) the same with calls counting 20.
Exponentiation, O(N)
public int expt(int b, int n) { int result; if (n<=0) { result = 1; } else { result = b * expt(b, n-1); } return result; } |
2 1 3 3 28 2 ------ 39 |
Exponentiation, O(log N)
public int expt(int b, int n) { return fastExpt(b,n); } private int fastExpt(int b, int n) { int result; if (n<=0) result = 1; else if (even(n)) result = square(fastExpt(b, n/2)); else result = b * fastExpt(b, n-1); return result; } private int square(int x) { return (x * x); } private boolean even(int x) { return (x % 2 == 0); } |
2 23 2 1 6 67 28 2 1 4 1 6 ------ 143 |
Comparison
- some might argue that the second method is ~3.7 times as expensive
- And, even if it is O(log N), it will be slower than the first method
- Let's look at values to see if this is true...
N | O(N) | O(log N) | 39*O(N) | 143*O(log N) |
---|---|---|---|---|
2 | 2 | 1 | 78 | 143 |
4 | 4 | 2 | 156 | 286 |
8 | 8 | 3 | 312 | 429 |
16 | 16 | 4 | 624 | 572 |
32 | 32 | 5 | 1248 | 715 |
64 | 64 | 6 | 2496 | 858 |
128 | 128 | 7 | 4992 | 1001 |
256 | 256 | 8 | 9984 | 1144 |
512 | 512 | 9 | 19968 | 1287 |
1024 | 1024 | 10 | 39936 | 1430 |
String Reversal
- Suppose that we would like to reverse the characters in a string: "Theory" becomes "yroehT"
- Analysis:
- Inputs: String
- Outputs: String
- Constraints: input and output strings contain some characters, output in reverse order of input
- Assumptions: none
- Relationships: none
- For what group of strings do we immediately know a solution?
- Strings consisting of a single character
- Strings consisting of no characters
- These define our base cases
- How can we work towards these base cases?
- Remove first character
- Reverse the rest of the string
- Add the first character to the end
- This defines our recursive case