Messy Example 1
Code
ass Mess1 {
public static void main (String[] arg) {
int d;
d=10;
System.out.println(d);
Ex1 g;
g=new Ex1();
g.a(d);
System.out.println(d);
}
}
class Ex1 {
int p;
Ex1() {
p=0;
}
public void a (int p) {
this.b(p);
this.printVals(p);
this.b(this.p);
}
private void b (int q) {
this.printVals(q);
}
private void printVals(int r) {
System.out.println(r);
}
}
Output
10
10
10
0
10
Messy Example 2
Code
class Mess2 {
public static void main (String[] arg) {
int d,e;
d=4;
e=6;
System.out.println(d + " " + e);
Ex2 g = new Ex2();
g.a(d,e);
System.out.println(d + " " + e);
}
}
class Ex2 {
int p;
Ex2() {
p=3;
}
public void a (int p, int r) {
this.b(r,p);
this.printVals(p,r);
this.b(this.p,r);
}
private void b (int p, int r) {
this.printVals(p,r);
this.printVals(this.p,r);
}
private void printVals(int p, int r) {
System.out.println(p + " " + r);
}
}
Output
4 6
6 4
3 4
4 6
6 3
3 3
4 6
Messy Example 3
Code
class Mess3 {
public static void main (String[] arg) {
int d,e;
d=4; e=6;
System.out.println(d + " " + e);
Ex3 g = new Ex3();
g.a(d,e);
System.out.println(d + " " + e);
}
}
class Ex3 {
int p;
Ex3() {
p=3;
}
public void a (int p, int r) {
this.b(r,p);
this.printVals(p,r);
this.b(r,this.p);
}
private void b (int p, int r) {
this.printVals(r, this.p);
c(p,r);
c(this.p, r);
}
void c(int r, int p) {
this.printVals(p,r);
}
private void printVals(int p, int r) {
System.out.println(p + " " + r);
}
}
Messy Example 4
Code
class Mess4 {
public static void main (String[] arg) {
int d,e,f;
d=4; e=6; f=8;
System.out.println(d + " " + e + " " + f);
Ex4 g = new Ex4();
g.a(d,e,f);
System.out.println(d + " " + e + " " + f);
}
}
class Ex4 {
int p;
Ex4() {
p=3;
}
public void a (int p, int q, int r) {
b(q,r,p);
this.printVals(p,q,r);
this.b(r,q,this.p);
}
private void b(int p, int q, int r) {
this.printVals(p,q,r);
c(this.p, q, r);
c(p,r,q);
}
void c(int q, int p, int r) {
this.printVals(p,q,r);
}
private void printVals(int p, int q, int r) {
System.out.println(p + " " + q + " " + r);
}
}
Tree Recursion
- Consider the Fibonacci Number Sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, ...
- This sequence is defined by the rule:
/ 0 when n=0
fib(n)= | 1 when n=1
\ fib(n-1) + fib(n-2) otherwise
public int fib (int n) {
int result;
if (n<=0)
result = 0;
else if (n == 1)
result = 1;
else
result = (fib(n-1) + fib(n-2));
return result;
}
Orders of Growth
- An important consideration in the comparison of different soluytions to problems is the complexity of the algorithms used.
- This complexity is measured on two important quantities:
- The space requirements (space complexity) to represent all values used in the algorithm
- The time requirements (time complexity) needed to perform all of the needed calculations
The BIG-O
- Informal Definition
- If function Est(n) times some integer constant, m, dominates funciton Time(n), then we say:
- Time(n) = O(Est(n))
Algebraic Identities for Big-O
Assume c denotes a constant and that f and g are arbitrary functions
- c * f = O(f) -- you can drop constant multipliers
17n = O(n)
25n² = O(n²)
99 = O(1)
- f + g = O(f), so long as f dominates g
n² + 3 = O(n²)
n5 + n3 + n = O(n5)
- f * g = O(f) * O(g)
n3m² = O(n3) * O(m²)
Important Order Relationships
for the following assume that k and c are positive constants and that n is a variable
nn |
dominates n!
|
n! |
dominates cn
|
cn |
dominates kn, so long as c>k
|
kn |
dominates kc, so long as k>1
|
nc |
dominates nk, so long as c>k
|
n2 |
dominates n * log(n)
|
n * log(n) |
dominates n
|
n |
dominates log(n)
|
log(n) |
dominates 1
|
Special Big-O Complexities
- A complexity of O(1) is called Constant Complexity
- A complexity of O(N) is called Linear Complexity
- A complexity of O(NK) is called Polynomial Complexity
- Any complexity dominating O(2N) is called Exponential Complexity
Growth of Complexity Functions
log(n) |
n |
n * log(n) |
n2 |
n3 |
2n
|
0 |
1 |
0 |
1 |
1 |
2
|
1 |
2 |
2 |
4 |
8 |
4
|
2 |
4 |
8 |
16 |
64 |
16
|
3 |
8 |
24 |
64 |
512 |
256
|
4 |
16 |
64 |
256 |
4096 |
65536
|
5 |
32 |
160 |
1024 |
32768 |
4294967296
|
6 |
64 |
384 |
4096 |
262144 |
(Note 1)
|
7 |
128 |
896 |
16384 |
2097152 |
(Note 2)
|
8 |
256 |
2048 |
65536 |
16777216 |
?????
|
- Approximately the number of machine instructions executed on a 1 gigaflop (109) supercomputer in 5000 years.
- Approximately 500 billion times the age of the universe (in nanoseconds: 10-9)